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Summary 

The compound (CF3)2C=N-B[N(CH3)2]2 has been synthesized and spectro- 
scopic data on species of the type (CF,),C=N-BR, have been evaluated; the 
data substantiate a linear arrangement for the central C=N--B moiety of the 
compounds. 

Introduction 

Monomeric iminoboranes containing the basic skeleton >C=N-B= can be 
viewed as isoelectronic analogs of allenes , :C=C=Cr, provided one assumes 
back-bonding of r-electrons from the nitrogen to the vacant p,-orbital of boron 
in the former species. However, experimental data on such iminoboranes are 
relatively scarce [2] and are not all in consonance. An X-ray study on (C6Hs)?_- 
C=N-BR2 (R = mesityl) seems to substantiate an allene-like structure for the 
compound with a C=N-B bond angle of 170” [3] and LCAO calculations result 
in a B-N bond order of 1.59 for the cited compound [4]. The limited available 
dipole moment data [5,6] do not appear to be convincing evidence-to dispute the 
linearity of the C=N-B skeleton and a population analysis [7] seems to favor 
an allene-like structure_ Vibrational spectroscopic as well as “B NMR data on 
iminoboranes appear to be yet inconclusive. 

The compound (CF,),C=N-B(CH,), has recently been synthesized and 
preliminary data on the species substantiated the existence of a linear C=N-B 
skeleton for the compound [S]. These data are now elaborated on in detail and, 
in conjunction with data obtained for the new compound (CF3)2C=N-B[N- 
(CH,),], and some additional related species, appear indeed to be best inter- 
preted in terms of a linear allene-like skeleton for compounds of the type 
(CF&C=N-BRz_ 

* For part LXXV see ref. 1. 
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Bed& anc?@icussion 

He~afluor&o~ropylideniminobis(dimethyla&ino)borane (I), (CF&C=N-B- 
[N{CK&&, is readily obtained when N-lithiohe&fluoroisopropylidenimine, 
(CF&C=NLi 193, is treated with bis(dimethylamino)chlorobo~e, ClB[N- 
(CH,),],. The~sLigL~tLy yellow liquid I has an absorption band at 309 nm with an 
extinction coefficient of abbut 400. The mass spectrum of the compound 
features a parent peak (appearance potential: 5.6 f 0.3 eV) at m/e 263 (40% 
relative intensity of the base peak at m/e 99). In contrast to the mass spectrum 
of tr+(dimethylamino)borane, BfN(CH,),],, which is characterized by fragmen- 
tation with the preferential loss of methyl and dimethylamino groups, the mass 
spectral fragmentation of I is dominated by the loss of CF3 and (CF3)&N from 
the parent ion, The proton NMR spec?xum of I (50% SoLution in CH,CI~%xhibits) 
only one singlet with 6 2.54 ppm; two singlets observed in the 13C NMR spectrum 
of %he compound (50% solution in C6D6 vs. T-MS) with 6 39.3 and 38.5 ppm, 
respectively, are assigned to the carbon atoms of the dimethylamino groups. 
This observation suggests a slight distortion from coplanarity of the latter groups. 
The multi-line vibrational spectrum of the compound is not readily assigned; 
however, a medium intensity absorption near 1768 cm-’ seems to be typical 
for the type of compound under consideration, i.e., involving a C=N-B moiety. 
Additional spectroscopic data of I are .discussed below. 

A C=N stretching frequency has been assigned for (CF&C=NH at 1701 cm-’ 
[lo]; only-very minor frequency shifts are observed for this absorption if the 
N-bonded hydrogen is replaced by D, CH3, or CzHS to 1694,1704, and 1698 
cm-l, respectively [ll]. On the other hand, N-borylation causes a rather drastic 
shift of this mode to 1820 cm-’ for (CF&C=N-BR2 with R = CH3 and to 
1841 cm-’ when R = CsHs_ These data illustrate the influence of N-borylation 
on this particular vibration which in these (hexafluoroisopropylidenimino)boranes 
seems unlikely to be a pure C=N stretch. Rather, the data suggest that the 
observed band assumes a C=N-B group character in the iminoboranes. The 
assignment of a symmetric group stretching frequency in the spectrum of 
(CF&C=N-B(C6H& at 1098 cm-’ [ ll] seems to support this conclusion, 
especially since this separation of the symmetric and antisymmetric modes is 
almost identical to that observed for allene [12]. 

The 14N NMR spectrum of (CF3)&=NI shows a single resonance line with a 
chemical shift 6 24 ppm (vs. external aqueous NaN03) with a half-maximum 
peak width of 250 Hz; for (CF,),C=N-B(CH,),, S(i4N) 7 ppm. The resonance 
signal of the former compound is observed at very low field as compared to 
am-hes; this is readily interpreted in terms of the CN double bond as well as 
the inductive effect of the CF3 groups. The quite similar shielding of the 
nitrogen in the-latter compound is likely to be caused by two opposing factors. 
The 33N r-interaction should promote a low field shiit which is, however, 
opposed by a change in geometry about the nitrogen, assuming a linear C=N-B 
arrangement in the-compound, which should result in a high field shift. Hence, 
the 14N NMR data wduld tend to support an allene-like structture of (CF,),- 
C=N-B(CH&. Additional NMR data on species of the type (CF&C=N-BRt 
are compiled in Table 1. 

The lgF NMR spectra show only single resonance lines for the (CF&C= 



TABLE 1 

SELECTED NMR DATA ON SPECXES OF THE TYPE (CF3)2C=N%R2 5 

R CH3 C6HS N(CH3)2 

6 (lgF) -71.3 -75.0 -71.7 
6PCF3) 117.0 116.5 117.1 
6(I’J3) 46.3 52.0 27 .o 

a ~emkd shifts 6 ill PPm. POsitiVe values indicating downfield from the reference; references: IgJ? = 
intend CFCl, 13C = external Si(CH&. 11% = external (C~HZ_)~OBFJ. 

N-BR2 species whereas the “F spectrum of (CF3)2C=NH shows two distinct 
signals (quartets) for the fluorine atoms 1131. These observa$ions indicate that 
the fluorine atoms of the boron derivatives are all in equivalent environment 
thus lending credence to molecular structures involving linear C-N-B skeletons. 
This interpretation is further substantiated by the observation of only a single 
“C resonance signal (quartet) for the carbon atoms of the CF3 groups, whereas 
two such signals are observed in the spectrum of (CF,),C=NH. Also, the “B 
NMR data do not dispute r-type interaction between nitrogen and boron in the 
species; indeed, the I’B resonance signals of the (CFS)2C=N-BRZ compounds 
closely parallel those of the corresponding aminoboranes, R’*N-BRz, where 
r-interaction and multipIe NB bond character is generally recognized. 

In conclusion, the available spectroscopic data clearly suggest that in com- 
pounds of the type (CF3)2C=N-BR, the central CNB moiety is linear due to 
NB r-bonding. The comp&rnds may be viewed as semi-inorganic analogs of 
allenes and may well lend themselves to allene-type chemical reactions. 

Experimental 

All reactions and transfers were carried out under an argon atmosphere_ Sol- 
vents were dried by conventional methods and freshly distilled before use_ 

Infrared spectra of the neat liquids were obtained between CsI plates.and 
vapor phase spectra were recorded using a 10 cm single-path gas cell equipped 
with CsI windows. All infrared spectra were obtained on a Perkin-Elmer Model 
621 spectrometer under standard operating conditions as well as employing a 
4X abscissa expansion (wavelength calibration with a polystyrene film). Ran-ran 
spectra of the neat liquids were recorded with a Jarrell-Ash double-monochrom- 
eter Raman instrument using a 50 mW He-Ne laser as the exciting device. Proton 
NMR spectra (50% solution in CH,Cl,) were recorded on a Varian T-60 spectrom- 
eter using tetramethylsilane as internal reference_ Boron-11 spectra (neat 
liquids) and fluorine-19 NlMR spectra (50% in CH2ClZ versus internal CFC13) 
were obtained on Bruker HX8 and 60-E instruments, respectively; the former 
spectra were obtained using external B(OCH& as reference and chemical shift 
values were recalculated for (C,H,),O - BF3 as reference. Carbon-13 NMR spectra 
(50% solution in C,D,) were recorded on a Varian Model CFT-20 spectrometer 
using tetramethylsilane as reference_ All chemical shift data are given in ppm 
with positive values indicating downfield from the indicated reference. Mass 
spectral data were obtained on a Perkin-Elmer-Hitachi RMU-7 instrument. 
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.’ -.l~- (Cl$&C& [ 131, -( CF,)&&(&H,), 1143; (CF,),CNk(bH,), c&-i, (CF&CNLi 

[9],&3[N(CH&]i ]l!S];~and (CH&BBr [16] +ere.prepared-by literature proce- 
;d=&; _I....-..__; .-_: . 

The mass~spectrum of (CF&CNH (70 eV) was found to exhibit only.three 
peaks &. m/e..(relative abundances in parentheses) 165 (LO), 97 (2.7), and 96 
(100). !“C NMR-spectrum: 6 (in ppmj~~154.6 septet (J(FCC) 39 Hz), 116.7 
quwet (J(FCj.278.2 Hx), 115.5 quartet (J(FC) 281.0 Hz). 

The 79 eV -mass spectrum of (CH&BBr showed peaks (relative abundances 
(iri parentheses) of greater-than 5% only) at m/e 122 (8,3),~ 120 (8.7), 107 (7.21, 
105(6.8), 83 (6-l), 41 (loo), 40 (37_4), 39 (26.4), 38 (9-l), 37 (14.3), 36 
(6.8). 13C NMR spectrum at -7°C: 6’(in ppm) 18.6 quartet (partially collapsed). 

Besides the parent peak at m/e-205 (3.8% relative abundance) the 15 eV mass 
spectnnnof (CF&C=N-B(CH,), showed peaks (relative abundances (in paren- 
theses) of great&- than 5% only) at m/e 165 (5.1), 140 (7,4), 136 (15.6), 96 
(44.4), 83.(100), 82 (51.5), 81(6.5), 69 (X3.7);-43 (l-7.8), 42 (5.7), 41(15.2), 
40 (Z9.4). Vibrational spectrum (gas phase, 2 Torr): 369ti, 3675vw, 3315vw, 
2968vw, 2928(sh), 2858vw, (1829ms at 30 Torr), 1408(sh), 1389w, 1333w, 
1262m, 1212ms, 1198ms, 970vw; lower region at 30 Ton: 968vs, 931vs, 904(sh), 
778vw, 746(sh), 708 (PQR), 636w, 537m, 478m, 449wm. Raman (neat iiquidj: 
291Os(p), 1820m(br,p), 1430w(br, dp), 1302wm(p), 1241vw, 1219(sh), 1202ms- 
(pj, 117Ovw(dp), 1135m(dp), 897m(p), 775w, 748w, 732s(p), 577wm(p), 
538w(b), 45Ovw(b); 405m(p), 38Ovw(b), 347w, 331ms(p), 289wm(dp), 243vs- 
(P), 196ms(dp). 

He.rafluoroisopropylideniminobis(dimethylamino)borane 
A shrrry of hexafluoroisopropylidenimino lithium (20.5 g, 120 mmol) in 

hexan& was generated in situ in a 250 ml three-necked flask equipped with a 
magnetic stirrer, a reflux condenser (O”C), and an addition funnel. The flask 
was cooled to -30°C and a solution of 11 g (81 mmol) of bis(dimethylamino)- 
chlorobomae in approximately 30 ml of hexane was added dropwise over a 
period of about 30 minutes_ The mixture was allowed to warm to room tem- 
perature during a period of 3 hours and was stored overnight. The reaction 
vessel was then attached to a vacuum line and hexane was stripped off at -30°C 
into a trap cooled to -196°C The off-white pasty residue was heated in an oil 
bath of 40 to 50°C under a distillation setup and a pressure of 4 X lo-’ Ton- and 
approximately-20 ml of yellow distillate were collected in a -196°C receiving 
vessel. Two subsequent redistillations using a spinning band column gave 14.2 
g (54% yield) of yellow liquid, boiling point 70 to 73”C/99 Torr, which was 
identified by-its mass spectrum as the desired (CF&C=N-B[N(CH3)2]2_ 

Mass spectrum (70 eV, relative adundances (in parentheses) of greater than 
6% only): m/e 263 (40-O), 262 (20-O), 260 (8.8), 194 (35-O), 169‘(30.0), 168 
(8.8); 143 (16_3), 126 (10-O), 117 (25-O), 115 (13.8); 103 (26.3), 100 (11.3), 
99 (loo), 98 (52.5), 97 (11.3), 96 (33.8), 94 (15.0), 93 (8.8), 92 (61.3), 91 
(12.5), 85 (15.0), 84 (11.3), 83 (23-S), 81 (12.5), 74 (99.5), 73 (28.8), 71 
(22.5), 70 (26.3), 69 (48.8), 58 (33.8), 57 (27.5), 56 (76.3), 55 (55-O), 54 
(11-3); 51 (10-O), 45 (25-O), 44 (99.5), 43 (43.8), 42 (52.5), 41 (37.5), 40 
(11.3), 39 (10-O), 29 (8.8), 28 (12.5), 27 (8.8). Vibrational spectrum: IR (neat 
liquid): 2998m, 2958(sh)j -2929s; 2885~, 2871(sh), 2810m, 1773(sh), 1765m, 
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1546(sh, br),1535(sh),153ls,1526(sh),1519(sh),1509(sh),1495(sh), 1467(sh), 
1461s, 1421(sh), 1419s, 1405vs, 1385s, 1368s, 133Ovs, 1289(?), 1241vs, 1194- 

(sh), 1180vs,1150(sh,br),1118m,1108(sh),1072m,1068(sh),997m,961ms, 
910(sh),906m,865~v,753m,723s,691m,670(sh),667w,650w,582w,532vw, 
52Ovw, 52Ow, 433w, 405vw, 325(sh, br), 309w, 302(sh), 289(sh). IR (gas phase, 
7 ToR): 3005m, 2968m, 2933m, 2891s, 2877(sh), 2817m, 1773(sh), 1768m, 
1561(sh), 1544(sh, br), 1535(sh), 153Os, 1524(sh), 1519(sh), 1509(sh), 1496- 
(sh,br),1473(sh),1463m,1460(sh),1421m,1407s,1372m,1332s,1288(?), 
1248vs,1237(sh),1192vs,1152(sh),1145(?),1123m,1073w,1034(?),1000w, 
965vs,907vw,867vw,788~,752w,725m,713(sh),692w,651vw,58lvw, 
532~~,521(sh,br),439v~.Raman(neatliquid): 3002m(p),2943s(p),2920(sh), 
2902s(p),2872vs(p),2814(sh),2809m(p),1772w(p),1492(sh),1466m(dp), 
1460(sh),1430w(dp),1425(sb),1377w(p),1305vw(b),125~v(p),1190(sh, 
br),1157(sh),1146(?),1124vw,1109(sh),1077vw(dp),1017(sh),1003w(p), 
976(sh),914vw,902(sh),783w(p),777(sh),758(sh),730vw,701(~v(p~, 
698(sh),677vw,652vw,6lOvw(p), 59Ow(p),526w(p),447vw(p),414vw(p), 
368w(p),337w(p),317w(p),291w(p),256vw,216(sh),186w(dp),159(sh). 
13CNMR spectrum: 6 (in ppm)140.4 quintet, 117_1quartet,39_3 singiet,38_5 
singlet. 
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